Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; : e2311317, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38712469

RESUMO

The advent of 2D materials has ushered in the exploration of their synthesis, characterization and application. While plenty of 2D materials have been synthesized on various metallic substrates, interfacial interaction significantly affects their intrinsic electronic properties. Additionally, the complex transfer process presents further challenges. In this context, experimental efforts are devoted to the direct growth on technologically important semiconductor/insulator substrates. This review aims to uncover the effects of substrate on the growth of 2D materials. The focus is on non-metallic substrate used for epitaxial growth and how this highlights the necessity for phase engineering and advanced characterization at atomic scale. Special attention is paid to monoelemental 2D structures with topological properties. The conclusion is drawn through a discussion of the requirements for integrating 2D materials with current semiconductor-based technology and the unique properties of heterostructures based on 2D materials. Overall, this review describes how 2D materials can be fabricated directly on non-metallic substrates and the exploration of growth mechanism at atomic scale.

2.
Small Methods ; : e2301512, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38175841

RESUMO

Combinations of phosphorus with main group III, IV, and V elements are theoretically predicted to generate 2D binary phosphides with extraordinary properties and promising applications. However, experimental synthesis is significantly lacking. Here, a general approach for preparing 2D binary phosphides is reported using single crystalline surfaces containing the constituent element of target 2D materials as the substrate. To validate this, SnP3 and BiP, representing typical 2D binary phosphides, are successfully synthesized on Cu2 Sn and bismuthene, respectively. Scanning tunneling microscopy imaging reveals a hexagonal pattern of SnP3 on Cu2 Sn, while α-BiP can be epitaxially grown on the α-bismuthene domain on Cu2 Sb. First-principles calculations reveal that the formation of SnP3 on Cu2 Sn is associated with strong interface bonding and significant charge transfer, while α-BiP interacts weakly with α-bismuthene so that its semiconducting property is preserved. The study demonstrates an attractive avenue for the atomic-scale growth of binary 2D materials via substrate phase engineering.

3.
Nano Lett ; 23(1): 148-154, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36566458

RESUMO

The power of surface chemistry to create atomically precise nanoarchitectures offers intriguing opportunities to advance the field of quantum technology. Strategies for building artificial electronic lattices by individually positioning atoms or molecules result in precisely tailored structures but lack structural robustness. Here, taking the advantage of strong bonding of Br atoms on noble metal surfaces, we report the production of stable quantum corrals by dehalogenation of hexabromobenzene molecules on a preheated Au(111) surface. The byproducts, Br adatoms, are confined within a new surface reconstruction pattern and aggregate into nanopores with an average size of 3.7 ± 0.1 nm, which create atomic orbital-like quantum resonance states inside each corral due to the interference of scattered electron waves. Remarkably, the atomic orbitals can be hybridized into molecular-like orbitals with distinct bonding and antibonding states. Our study opens up an avenue to fabricate quantum structures with high yield and superior robustness.

4.
J Phys Chem Lett ; 13(45): 10656-10665, 2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36354193

RESUMO

Point defects in semiconductors usually act as nonradiative charge carrier recombination centers, which severely limit the performance of optoelectronic devices. In this work, by combining time-domain density functional theory with nonadiabatic molecular dynamics simulations, we demonstrate suppressed nonradiative charge carrier recombination and prolonged carrier lifetime in two-dimensional (2D) ReX2 (X = S, Se) with S/Se vacancies. In particular, a S vacancy introduces a shallow hole trap state in ReS2, while a Se vacancy introduces both hole and electron trap states in ReSe2. Photoexcited electrons and holes can be rapidly captured by these defect states, while the release process is slow, which contributes to an elongated photocarrier lifetime. The suppressed charge carrier recombination lies in the vacancy-induced low-frequency phonon modes that weaken electron-phonon coupling, as well as the reduced overlap between electron and hole wave functions that decreases nonadiabatic coupling. This work provides physical insights into the charge carrier dynamics of 2D ReX2, which may stimulate considerable interest in using defect engineering for future optoelectronic nanodevices.

5.
J Phys Chem Lett ; 13(34): 8062-8077, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35997300

RESUMO

Two-dimensional (2D) polymers have garnered widespread interest because of their intriguing physicochemical properties. Envisaged applications in fields including nanodevices, solid-state chemistry, physical organic chemistry, and condensed matter physics, however, demand high-quality and large-scale production. In this perspective, we first introduce exotic band structures of organic frameworks holding honeycomb, kagome, and Lieb lattices. We further discuss how mesoscale ordered 2D polymers can be synthesized by means of choosing suitable monomers and optimizing growth conditions. We describe successful polymerization strategies to introducing a non-benzenoid subunit into a π-conjugated carbon lattice via delicately designed monomer precursors. Also, to obviate transfer and restore the intrinsic properties of π-conjugated polymers, new paradigms of aryl-aryl coupling on inert surfaces are discussed. Recent achievements in the photopolymerization demonstrate the need for monomer design. We conclude the potential applications of these organic networks and project the future possibilities in providing new insights into on-surface polymerization.

6.
J Phys Chem Lett ; 12(1): 211-217, 2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33325714

RESUMO

Stanene is a notable two-dimensional topological insulator with a large spin-orbit-coupling-induced band gap. However, the formation of surface alloy intermediates during the epitaxial growth on noble metal substrates prevents the as-grown stanene from preserving its intrinsic electronic states. Here, we show that an intentionally prepared 3×3Au2Sn(111) alloy surface is a suitable inert substrate for growing stanene without the further formation of a complicated surface alloy by scanning tunneling microscopy. The Sn tetramer and clover-shaped Sn pentamer are intermediates for the black-phosphorene-like Sn film at a substrate temperature of <420 K, which transforms to a blue-phosphorene-like stanene with a lattice constant of 0.50 nm above 500 K. First-principles calculations reveal that the epitaxial Sn layer exhibits a lattice registry growth mode and holds a direct energy gap of ∼0.4 eV. Furthermore, interfacial charge-transfer-induced significant Rashba splitting in its electronic structure gives it great potential in spintronic applications.

7.
Langmuir ; 36(26): 7706-7714, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32517475

RESUMO

Magnetorheological (MR) fluids have been successfully utilized in versatile fields but are still limited by their relatively inferior long-term dispersion stability. Herein, bio-inspired passion fruit-like Fe3O4@C nanospheres were fabricated via a simple hydrothermal and calcination approach to tackle the settling challenge. The unique structures provide sufficient active interfaces for the penetration of carrier mediums, leading to preferable wettability between particles and medium oils. Compared with the bare Fe3O4 nanoparticle suspension, the resulting Fe3O4@C nanosphere-based MR fluid exhibits desirable stability and relatively low field-off viscosity even at a high particle concentration up to 35 vol %.

8.
J Chem Phys ; 152(7): 074710, 2020 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-32087652

RESUMO

Monolayer iron oxides grown on metal substrates have widely been used as model systems in heterogeneous catalysis. By means of ambient-pressure scanning tunneling microscopy (AP-STM), we studied the in situ oxidation and reduction of FeO(111) grown on Au(111) by oxygen (O2) and carbon monoxide (CO), respectively. Oxygen dislocation lines present on FeO islands are highly active for O2 dissociation. X-ray photoelectron spectroscopy measurements distinctly reveal the reversible oxidation and reduction of FeO islands after sequential exposure to O2 and CO. Our AP-STM results show that excess O atoms can be further incorporated on dislocation lines and react with CO, whereas the CO is not strong enough to reduce the FeO supported on Au(111) that is essential to retain the activity of oxygen dislocation lines.

9.
ACS Nano ; 14(2): 2385-2394, 2020 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-32031783

RESUMO

In recent years, two-dimensional (2D) group VA elemental materials have attracted considerable interest from physics/chemistry and materials science communities, with particular attention paid to honeycomb blue phosphorene. To date, phosphorene is limited to its α-phase and small sizes because it can only be produced by exfoliating black phosphorus crystals. Here, we report the direct synthesis of high-quality phosphorene on a nonmetallic copper oxide substrate by molecular beam epitaxy. By combining scanning tunneling microscopy/spectroscopy, X-ray photoelectron spectroscopy, and first-principles calculations, we demonstrate the growth intermediates and electronic structures of phosphorene on Cu3O2/Cu(111). Surprisingly, the grown phosphorene has a flat honeycomb lattice, similar to graphene, which exhibits a metallic nature. We reveal that the growth mechanism and morphology of phosphorene are strongly correlated with the surface structures of prepared copper oxide, and the resulting phosphorene can be stabilized after high-temperature annealing above 600 K even in oxygen gas. The high stability is closely related to the irregular Moiré pattern and structural corrugations of phosphorene on Cu3O2/Cu(111) that efficiently relieve the surface strain. These results shed light on future fabrication of large-scale, versatile 2D structures for interconnect and device integration.

10.
J Phys Chem Lett ; 11(4): 1317-1329, 2020 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-31945298

RESUMO

An atomic layer of tin in a buckled honeycomb lattice, termed stanene, is a promising large-gap two-dimensional topological insulator for realizing room-temperature quantum-spin-Hall effect and therefore has drawn tremendous interest in recent years. Because the electronic structures of Sn allotropes are sensitive to lattice strain, e.g. the semimetallic α-phase of Sn can transform into a three-dimensional topological Dirac semimetal under compressive strain, recent experimental advances have demonstrated that stanene layers on different substrates can also host various electronic properties relating to in-plane strain, interfacial charge transfer, layer thickness, and so on. Thus, comprehensive understanding of the growth mechanism at the atomic scale is highly desirable for precise control of such tunable properties. Herein, the fundamental properties of stanene and α-Sn films, recent achievements in epitaxial growth, challenges in high-quality synthesis, and possible applications of stanene are discussed.

11.
Adv Mater ; 32(4): e1906873, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31825535

RESUMO

Controlled synthesis of 2D structures on nonmetallic substrate is challenging, yet an attractive approach for the integration of 2D systems into current semiconductor technologies. Herein, the direct synthesis of high-quality 2D antimony, or antimonene, on dielectric copper oxide substrate by molecular beam epitaxy is reported. Delicate scanning tunneling microscopy imaging on the evolution intermediates reveals a segregation growth process on Cu3 O2 /Cu(111), from ordered dimer chains to packed dot arrays, and finally to monolayer antimonene. First-principles calculations demonstrate the strain-modulated band structures in antimonene, which interacts weakly with the oxide surface so that its semiconducting nature is preserved, in perfect agreement with spectroscopic measurements. This work paves the way for large-scale growth and processing of antimonene for practical implementation.

12.
ACS Nano ; 13(9): 10622-10630, 2019 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-31487147

RESUMO

Epitaxial two-dimensional (2D) nanostructures with regular patterns show great promise as templates for adsorbate confinement. Prospectively, employing 2D semiconductors with reduced density of states leads to a long excited-state lifetime that allows us to directly image the dynamics of the adsorbate. We show that epitaxial blue phosphorene (blueP) on Au(111) provides such a platform to trap water molecules in the periodic nanopores without formation of strong bonds. The trapped water aggregate is tentatively assigned to a hexamer based on our scanning tunneling microscopy studies and first-principles calculations. Real-space observation of conformational switching of the hexamer induced by inelastic electrons is achieved by using low-temperature scanning tunneling microscopy with molecular resolution. We found a localized interfacial charge rearrangement between the water hexamer and P atoms underneath that is responsible for the reversible desorption and adsorption of water molecules by changing the sample bias polarity from positive to negative, offering a promising strategy for engineering the electronic properties of blueP.

13.
Adv Mater ; 31(29): e1902606, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31157463

RESUMO

Antimonene, a new semiconductor with fundamental bandgap and desirable stability, has been experimentally realized recently. However, epitaxial growth of wafer-scale single-crystalline monolayer antimonene preserving its buckled configuration remains a daunting challenge. Here, Cu(111) and Cu(110) are chosen as the substrates to fabricate high-quality, single-crystalline antimonene via molecular beam epitaxy (MBE). Surface alloys form spontaneously after the deposition and postannealing of Sb on two substrates that show threefold and twofold symmetry with different lattice constants. Increasing the coverage leads to the epitaxial growth of two atomic types of antimonene, both exhibiting a hexagonal lattice but with significant difference in lattice constants, which are observed by scanning tunneling microscopy. Scanning tunneling spectroscopy measurements reveal the strain-induced tunable bandgap, in agreement with the first-principles calculations. The results show that epitaxial growth of antimonene on different substrates allow the electronic properties of these films to be tuned by substrate-induced strain and stress.

14.
Small ; 15(22): e1805395, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30942946

RESUMO

The future electronic application of graphene highly relies on the production of large-area high-quality single-crystal graphene. However, the growth of single-crystal graphene on different substrates via either single nucleation or seamless stitching is carried out at a temperature of 1000 °C or higher. The usage of this high temperature generates a variety of problems, including complexity of operation, higher contamination, metal evaporation, and wrinkles owing to the mismatch of thermal expansion coefficients between the substrate and graphene. Here, a new approach for the fabrication of ultraflat single-crystal graphene using Cu/Ni (111)/sapphire wafers at lower temperature is reported. It is found that the temperature of epitaxial growth of graphene using Cu/Ni (111) can be reduced to 750 °C, much lower than that of earlier reports on catalytic surfaces. Devices made of graphene grown at 750 °C have a carrier mobility up to ≈9700 cm2 V-1 s-1 at room temperature. This work shines light on a way toward a much lower temperature growth of high-quality graphene in single crystallinity, which could benefit future electronic applications.

15.
Langmuir ; 35(9): 3507-3512, 2019 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-30759989

RESUMO

Molecular devices have become an emergent branch of nanoscience and technology beyond traditional silicon-based electronic devices. The properties of these devices are intimately related to the molecular conformation and packing. In this article, three different conformations of melamine molecules are observed on Au(111), and a transition from the lying-down to standing-up phase with long-range order is realized in melamine chains with the assistance of hexabromobenzene (HBB). We argue that it is the expanding of HBB domains from hexagonal to the dimer phase due to surface dehalogenation that facilitates the dehydrogenation of melamine to form a standing-up conformation. Similar transitions are also accomplished on the Ag(111) surface. Our results provide an effective way to achieve standing-up molecular arrays with long-range order on relatively less active metals. This may have significant implications in fabricating organic thin film transistors.

16.
Nat Commun ; 9(1): 5168, 2018 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-30518867

RESUMO

Lateral graphene p-n junctions are important since they constitute the core components in a variety of electronic/photonic systems. However, formation of lateral graphene p-n junctions with a controllable doping levels is still a great challenge due to the monolayer feature of graphene. Herein, by performing selective ion implantation and in situ growth by dynamic chemical vapor deposition, direct formation of seamless lateral graphene p-n junctions with spatial control and tunable doping is demonstrated. Uniform lattice substitution with heteroatoms is achieved in both the boron-doped and nitrogen-doped regions and photoelectrical assessment reveals that the seamless lateral p-n junctions exhibit a distinct photocurrent response under ambient conditions. As ion implantation is a standard technique in microelectronics, our study suggests a simple and effective strategy for mass production of graphene p-n junctions with batch capability and spatial controllability, which can be readily integrated into the production of graphene-based electronics and photonics.

17.
Nanoscale ; 10(46): 21575-21603, 2018 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-30457619

RESUMO

Phosphorus, one of the most abundant elements in the Earth (∼0.1%), has attracted much attention in the last five years since the rediscovery of two-dimensional (2D) black phosphorus (BP) in 2014. The successful scaling down of BP endows this 'old material' with new vitality, resulting from the intriguing semiconducting properties in the atomic scale limit, i.e. layer-dependent bandgap that covers from the visible light to mid-infrared light spectrum as well as hole-dominated ambipolar transport characteristics. Intensive research effort has been devoted to the fabrication, characterization, functionalization and application of BP and other phosphorus allotropes. In this review article, we summarize the fundamental properties and fabrication techniques of BP, with particular emphasis on the recent progress in molecular beam epitaxy growth of 2D phosphorus. Subsequently, we highlight recent progress in BP (opto)electronic device applications achieved via customized manipulation methods, such as interface, defect and bandgap engineering as well as forming Lego-like stacked heterostructures.

18.
Nanoscale ; 10(7): 3350-3355, 2018 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-29387855

RESUMO

A stable three-dimensional layered GaTeCl bulk counterpart is first known from experiment since 1980s. In this study, we propose a two-dimensional GaTeCl, the band structure of which has a tendency of intrinsic direct-to-indirect band gap transitions as a result of a decrease in the layer number, while the changes in the band gap value are minor. The GaTeCl monolayer possesses a wide indirect band gap of 3.06 eV and high hole mobility of up to 4710 cm2 V-1 s-1, which, intriguingly, can be converted into direct band-gap semiconductors under a slight tensile strain. The GaTeCl monolayer is calculated to have an ideal cleavage energy of about 32 meV per atom; therefore, the synthesis of GaTeCl monolayer through exfoliation of bulk GaTeCl is available. In this regard, we simulate a monolayer GaTeCl MOSFETs device based on first-principles method quantum transport approach. The underlying device performance could pave the way for it to be a promising candidate as a suitable FET channel material.

19.
Langmuir ; 34(1): 553-560, 2018 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-29268013

RESUMO

Construction of tunable and robust two-dimensional (2D) molecular arrays with desirable lattices and functionalities over a macroscopic scale relies on spontaneous and reversible noncovalent interactions between suitable molecules as building blocks. Halogen bonding, with active tunability of direction, strength, and length, is ideal for tailoring supramolecular structures. Herein, by combining low-temperature scanning tunneling microscopy and systematic first-principles calculations, we demonstrate novel halogen bonding involving single halogen atoms and phase engineering in 2D molecular self-assembly. On the Au(111) surface, we observed catalyzed dehalogenation of hexabromobenzene (HBB) molecules, during which negatively charged bromine adatoms (Brδ-) were generated and participated in assembly via unique C-Brδ+···Brδ- interaction, drastically different from HBB assembly on a chemically inert graphene substrate. We successfully mapped out different phases of the assembled superstructure, including densely packed hexagonal, tetragonal, dimer chain, and expanded hexagonal lattices at room temperature, 60 °C, 90 °C, and 110 °C, respectively, and the critical role of Brδ- in regulating lattice characteristics was highlighted. Our results show promise for manipulating the interplay between noncovalent interactions and catalytic reactions for future development of molecular nanoelectronics and 2D crystal engineering.

20.
J Phys Chem B ; 122(2): 855-863, 2018 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-29091455

RESUMO

The role of oxygen in the activation of C-H bonds in methane on clean and oxygen-precovered Cu(111) and Cu2O(111) surfaces was studied with combined in situ near-ambient-pressure scanning tunneling microscopy and X-ray photoelectron spectroscopy. Activation of methane at 300 K and "moderate pressures" was only observed on oxygen-precovered Cu(111) surfaces. Density functional theory calculations reveal that the lowest activation energy barrier of C-H on Cu(111) in the presence of chemisorbed oxygen is related to a two-active-site, four-centered mechanism, which stabilizes the required transition-state intermediate by dipole-dipole attraction of O-H and Cu-CH3 species. The C-H bond activation barriers on Cu2O(111) surfaces are large due to the weak stabilization of H and CH3 fragments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...